Objective ages of acquisition for 3300+ simplified Chinese characters

Zhenguang G. Cai (The Chinese University of Hong Kong), Shuting Huang (The Chinese University of Hong Kong), Zebo Xu (The Chinese University of Hong Kong), Nan Zhao (Hong Kong Baptist University)

Age of acquisition (AoA) of a word refers to the age in which people first learn the word. Words that are acquired earlier in life, compare to late-acquired words, show processing advantages for participant in word recognition (e.g., Bylund, Abrahamsson, Hyltenstam, & Norrman, 2019) and spoken/handwritten word production (e.g., Chalard, Bonin, Méot, Boyer, & Fayol, 2003; Yum & Law, 2019). Besides, neuroimaging studies also shown that early-acquired words elicit greater activation in semantically related brain areas than late-acquired words (e.g., Fiebach, Friederici, Müller, von Cramon, & Hernandez, 2003). To facilitate research on AoA effects in Chinese, an AoA norms are required.

Following Liu, Shu and Li (2007) and Shu, Chen, Anderson, Wu and Xuan (2003), we constructed two AoA norms, one norm based on 18 textbooks of Chinese (corresponding to 18 terms from Grade 1 to 9) published by the People's Education Press in response to the 2001 national curriculum, and the other based on the 18 textbooks of Chinese by the same publisher in light of the 2011 national curriculum. One term is equated to 0.5 years. As children start Grade 1 at 6 years old, a character learned in the Term 1 then has an AoA of 6.5 years. There are AoAs for 3358 characters in the 2001 norm and 3395 characters in the 2011 norm (with 3013 characters available in both norms).

Descriptive results show that the current norms have significantly larger coverage of characters than previous norms developed by Shu et al. (2003) and Liu et al. (2007). We then compare these norms in terms of predicting behavioural indices in four large-scale psycholinguistic databases of simplified Chinese character processing: Sze, Rickard Liow, & Yap (2014; a character decision database), Tsang et al. (2018; a character decision database), Liu et al. (2007; a character naming database), and Wang, Huang, Zhou, & Cai (2020; a character handwriting database). As can be seen in Table 1, the current norms outperformed previous norms in explaining the behavioural data (e.g., the new norms had the two largest adjusted R²s in 6 out of the 8 comparisons). To further quantify such explanatory power differences, we also used the Bayes factor to assess how good a model is compare to another basing on the common characters. As is shown in Table 2, models using the 2001 AoA norm outperformed models using the Shu or Liu norm in 12 out of the 16 comparisons. Models using the 2011 norm outperformed their alternative models in 15 out of 16 comparisons (see Table 3). We also conducted a comparison between the two current norms, results shown that models with the 2011 norm outperformed models with the 2001 norm in 5 of the 8 comparisons and was outperformed in 1 comparison, with evidence being not clear in 2 other comparisons (see Table 4).

The developed objective AoAs are available at Open Science Framework (https://osf.io/j587y/) and can be used for subsequent research on Chinese character recognition or production.

		Accura	су	Reaction time			
	β	t	R^{2}_{adj}	β	t	R^{2}_{adj}	
Sze et al. (2014)							
N2001	-0.011	-14.14	0.086	0.088	28.28	0.273	
N2011	-0.011	-15.89	0.103	0.080	29.14	0.279	
Shu	-0.006	-7.26	0.028	0.069	18.30	0.159	
Liu	-0.006	-11.23	0.073	0.58	21.37	0.224	
Tsang et al. (2018))						
N2001	-2.200	-13.31	0.219	0.103	18.06	0.341	
N2011	-2.050	-13.49	0.221	0.103	18.23	0.341	
Shu	-1.649	-6.82	0.085	0.082	9.80	0.163	
Liu	-1.538	-10.36	0.176	0.074	14.94	0.309	
Liu et al. (2007)							
N2001				16.549	25.93	0.244	
N2011				15.651	26.48	0.246	
Shu				15.510	15.68	0.121	
Liu				12.670	30.44	0.279	
Wang et al. (2020)	, accuracy	and later	су				
N2001	-0.049	-21.43	0.237	0.190	25.72	0.309	
N2011	-0.049	-21.41	0.234	0.190	25.12	0.296	
Shu	-0.029	-10.66	0.082	0.146	16.36	0.175	
Liu	-0.036	-16.81	0.187	0.128	18.59	0.219	
Wang et al. (2020)	, duration						
N2001	0.138	12.70	0.098				
N2011	0.127	11.71	0.083				
Shu	0.148	10.96	0.087				
Liu	0.100	10.08	0.076				

Table 1: Regression results using different AoA norms on the four databases. All *p*-values for the *t*-tests are < .001; the largest adjusted R^2 is in **bold** and the second largest in *italic bold*.

	Accuracy				Reaction time						
Norm	AoA	Frequenc v	Meaning	R^{2}_{adj}	BF	AoA	Frequency	Meaning	R^{2}_{adj}	BF	
Sze et al.	(2014): N2001	vs. Shu									
N2001	-0.005***	0.008***	-0.000	0.050	477	0.054***	-0.101***	-0.007	0.319	> 1000	
Shu	-0.003*	0.009***	-0.000	0.044	— 177	0.035***	-0.110***	-0.007	0.299	>1000	
Sze et al.	(2014): N2001	vs. Liu	•	•							
Cai	-0.005***	0.007***	-0.001	0.042	0.15	0.058***	-0.101***	-0.005	0.320	>1000	
Liu	-0.005***	0.007***	-0.002	0.044	0.15	0.050***	-0.109***	-0.002	0.311	21000	
Tsang et a	I. (2018): N20										
N2001	-1.132**	2.374***	0.254	0.170	- 15	0.081***	-0.105***	-0.016	0.340	>1000	
Shu	-0.756**	2.517***	0.285	0.161	15	0.040**	-0.122***	-0.019	0.293	>1000	
Tsang et a	I. (2018): N20	01 vs. Liu									
N2001	-1.048**	3.096***	-0.048	0.222	2.0	0.065***	-0.146***	-0.010	0.398	5.2	
Liu	-0.935*	3.189***	-0.102	0.219	2.0	0.060***	-0.151***	-0.007	0.393		
Liu et al. (2007): N2001	vs. Shu									
N2001						12.22***	-13.75***	-0.828	0.227	>1000	
Shu						8.144***	-15.45***	-0.791	0.197	>1000	
Liu et al. (2007): N2001	vs. Liu									
N2001						16.56***	-17.07***	-1.197	0.302	>1000	
Liu						14.24***	-19.28***	-0.630	0.289	>1000	
	I. (2020): N20						l <u>.</u> (2020) laten	<u>cy: N2001 vs</u>	. Shu		
N2001	-0.022***	0.041***	0.005	0.177	- >1000	0.140***	-0.177***	0.007	0.319	>1000	
Shu	-0.015***	0.044***	0.005	0.166	21000	0.111***	-0.190***	0.007	0.292	21000	
							<u>I. (2020) durat</u>	<u>tion: N2001 v</u>			
N2001						0.042*	-0.270***	-0.049*	0.206	0.002	
Shu						0.080***	-0.255***	-0.047*	0.214	0.002	
	<u>I. (2020): N20</u>			-			<u>I. (2020) laten</u>				
N2001	-0.035***	0.047***	0.002	0.226	0.89	0.143***	-0.195***	0.008	0.340	>1000	
Liu	-0.034***	0.049***	0.004	0.226	0.03	0.131***	-0.208***	0.013	0.331	>1000	
						Wang et a	I. (2020) durat	tion: N2001 v	s. Liu		

Table 2: Comparison between the 2001 norm and previous norms in explanatory power (with character log frequency and number of meanings as co-variates).

N2001				0.065**	-0.249***	-0.033	0.189	67
Liu				0.050*	-0.258***	-0.031	0.187	0.7

Table 3: Comparison between the 2011 norm and previous norms in explanatory power (with character log frequency and number of meanings as co-variates).

			Accuracy			Reaction time					
Norm	AoA	Frequenc v	Meaning	$R^{2}_{ m adj}$	BF	AoA	Frequency	Meaning	$R^{2}_{ m adj}$	BF	
Sze et al. (.	2014): N2011	vs. Shu	•								
N2011	-0.007***	0.008***	-0.001	0.066	>1000	0.051***	-0.105***	-0.005	0.324	>1000	
Shu	-0.003	0.010***	-0.001	0.054	- >1000 -	0.035***	-0.113***	-0.006	0.308	>1000	
Sze et al. (2014): N2011	vs. Liu	•								
N2001	-0.008***	0.007***	-0.001	0.066	4.4	0.062***	-0.104***	-0.005	0.348	>1000	
Shu	-0.007***	0.008***	-0.002	0.062	- 44 -	0.049***	-0.114***	-0.002	0.334	>1000	
Tsang et al	. (2018): N20	11 vs. Shu									
N2011	-1.158***	2.305***	0.336	0.204	40	0.078***	-0.108***	-0.023	0.349	>1000	
Shu	-0.695*	2.557***	0.261	0.190	- 49 -	0.041**	-0.127***	-0.018	0.309	>1000	
Tsang et al	. (2018): N20	11 vs. Liu									
N2011	-1.224***	2.603***	0.160	0.247	- 101 -	0.073***	-0.137***	-0.016	0.407	4.6	
Liu	-0.614	3.004***	0.050	0.231		0.068***	-0.146***	-0.007	0.402	4.6	
Liu et al. (2	2007): N2011	vs. Shu									
N2011						14.07***	-12.68***	-0.476	0.241	>1000	
Shu					7	8.084***	-15.44***	-0.507	0.194	>1000	
Liu et al. (2	2007): N2011	vs. Liu	•								
N2011						16.53***	-17.46***	-0.755	0.310	>1000	
Liu						14.16***	-19.74***	-0.207	0.296	21000	
Wang et al.	. (2020): N20	11 vs. Shu				Wang et a	l. (2020) laten	cy: N2011 vs.	Shu		
N2011	-0.031***	0.037***	0.005	0.198	>1000	0.155***	-0.170***	0.006	0.330	>1000	
Shu	-0.017***	0.042***	0.006	0.166	>1000	0.113***	-0.183***	0.003	0.289	>1000	
						Wang et a	I. (2020) durat	ion: N2011 vs	s. Shu		
N2011						0.061**	-0.258***	0.047*	0.202	0.01	
Shu						0.087***	-0.246***	0.047*	0.208	0.01	
Wang et al.	. (2020): N20					Wang et al. (2020) latency: N2011 vs. Liu					
N2011	-0.044***	0.046***	0.002	0.257	>1000	0.161***	-0.200***	0.009	0.357	>1000	

Liu	-0.036***	0.050***	0.003	0.235		0.135***	-0.214***	0.011	0.335		
						Wang et al. (2020) duration: N2011 vs. Liu					
N2011						0.067**	-0.252***	-0.032	0.190	2.0	
Liu						0.057**	-0.258***	-0.031	0.188	3.8	

Table 4: Comparison between the 2011 norm and the 2001 norm in explanatory power (with character log frequency and number of mean	nings
as co-variates).	-

			Accuracy			Reaction time				
Norm	AoA	Frequenc	Meaning	R^{2}_{adj}	BF	AoA	Frequency	Meaning	$R^2_{ m adj}$	BF
0		У								
Sze et al. (2		T								
N2011	-0.010***	0.011***	-0.001	0.010	>1000	0.066***	-0.119***	-0.007	0.385	698
N2001	-0.008***	0.012***	-0.000	0.090	21000	0.063***	-0.120***	-0.008	0.381	090
Tsang et al.	(2018)									
N2011	-1.760***	2.589***	0.473	0.272	1.0	0.095***	-0.131***	-0.027*	0.432	0.18
N2001	-1.733***	2.651***	0.371	0.271	- 1.6 -	0.098***	-0.132***	-0.021	0.436	
Liu et al. (20	007)			·						
N2011						16.45***	-14.61***	-0.843	0.281	> 1000
N2001					1 [14.65***	-15.55***	-0.964	0.266	>1000
Wang et al.	(2020)			·						
N2011	-0.048***	0.048***	0.000	0.288	> 1000	0.193***	-0.201***	0.013	0.392	> 1000
N2001	-0.044***	0.048***	0.002	0.274	- >1000 -	0.185***	-0.199***	0.007	0.383	>1000
Wang et al.	(2020): Dura	tion		·						
N2011						0.049**	-0.275***	-0.038*	0.212	0.0
N2001					1 –	0.042**	-0.277***	-0.040*	0.211	- 2.8